智能化下的产物,无人棋牌室
Apache SINGA 0.2.0 发布,此版本主要更新内容如下:
- Training on GPU enables training of complex models on a single node with multiple GPU cards.
- Hybrid neural net partitioning supports data and model parallelism at the same time.
- Python wrapper makes it easy to configure the job, including neural net and SGD algorithm.
- RNN model and BPTT algorithm are implemented to support applications based on RNN models, e.g., GRU.
- Cloud software integration includes Mesos, Docker and HDFS.
- Visualization of neural net structure and layer information, which is helpful for debugging.
- Linear algebra functions and random functions against Blobs and raw data pointers.
- New layers, including SoftmaxLayer, ArgSortLayer, DummyLayer, RNN layers and cuDNN layers.
- Update Layer class to carry multiple data/grad Blobs.
- Extract features and test performance for new data by loading previously trained model parameters.
- Add Store class for IO operations.
Apache SINGA 是 Apache 在 2015 年 3 月 17 日接纳的一个孵化项目,是个分布式深度学习平台。
SINGA 是基于大型数据集训练大型深度学习模块的常规分布式学习平台。SINGA 支持各种流行的深度学习模块,其中的 feed-forward 模块包括 convolutional neural networks (CNN),能量模块 restricted Boltzmann machine (RBM) 和 recurrent neural networks (RNN)。
SGD 流:
SINGA 概览:
外部依赖:
glog
(New BSD)google-protobuf
(New BSD)openblas
(New BSD)zeromq
(LGPLv3 + static link exception)czmq
(Mozilla Public License Version 2.0)zookeeper
(Apache 2.0)