Google Research今天宣布,世界准确度最高的自然语言解析器SyntaxNet开源。谷歌开源再进一步。据介绍,谷歌在该平台上训练的模型的语言理解准确率超过90%。近日,众多科技巨头人工智能相关平台开源步伐明显加快:谷歌和Facebook一直在领跑,马斯克的OpenAI欲打造一个完全公开的AI模型训练营,就连一直被批评“保守”的亚马逊也在尝试开源。这一股开源热潮背后,是人工智能研究者的福利,但同时也是一场激烈的数据和平台争夺战。
Google环境计算( Ambient computing) 架构师Yonatan Zunger说:事实上,语言理解被我们认为是“AI的终极任务”,要解决这一难题,前提是要能解决全部人类水平人工智能的问题。
机器对语言的理解过程,可以分为几个步骤,其中很多的不确定性是逐渐明晰的(语音识别的不确定性更多,因为还要解决从声音到词的转换)。第一步是要把词分开,放到依存树上,看哪一个词是动词,对名词有哪些影响等等。随后,要理解每一个名字的含义。再次,再加入许多先验知识,即对这个世界的理解,因为很多句子只有使用了这些信息才能真正理解。如果足够幸运的话,到这就能得到清晰的理解了。
谷歌资深研究科学家Slav Petrov在Google Research的博客上写到:在谷歌,我们花费了大量的时间在思考,计算机系统如何才能阅读和理解人类语言,以一种更加智能的方式处理这些语言?今天,我们激动地跟大家分享我们的研究,向更广阔的人群发布SyntaxNet。这是一个在TensoFlow中运行的开源神经网络框架,提供自然语言理解系统基础。我们所公开的包含了所有用你自己的数据训练新的SyntaxNet模型所需要的代码,以及Paesey McParseface——我们已经训练好的,可用于分析英语文本的模型。
Paesey McParseface 建立于强大的机器学习算法,可以学会分析句子的语言结构,能解释特定句子中每一个词的功能。此类模型中,Paesey McParseface是世界上最精确的,我们希望他能帮助对自动提取信息、翻译和其它自然语言理解(NLU)中的应用感兴趣的研究者和开放者。
SyntaxNet是一个框架,即学术圈所指的SyntacticParser,他是许多NLU系统中的关键组件。在这个系统中输入一个句子,他会自动给句子中的每一个单词打上POS(part-of-Speech)标签,用来描述这些词的句法功能,并在依存句法树中呈现。这些句法关系直接涉及句子的潜在含义。